METABOLISM OF ADDED GIBBERELLIC ACID IN MALUS PUMILLA IN RELATION TO COOL STORAGE BREAKDOWN

R. B. H. WILLS

Department of Nutrition, School of Home Science, University of Otago, Dunedin, New Zealand

(Revised Received 5 May 1973. Accepted 21 May 1973)

Key Word Index-Malus pumilla; Rosaceae; apple; low temperature breakdown; effect of gibberellic acid.

Abstract—Gibberellic acid (GA_3) that was injected into the core of apples to reduce internal breakdown, was found to accumulate in the cortical tissue during cool storage only to a limited extent and never exceeded 0.5% of the added dose. Limitations on the commercial use of GA_3 would appear to be associated with the low level of incorporation into susceptible tissue.

Low temperature breakdown is a physiological disorder of cool stored apples that results in browning of cortical tissue and hence causes severe economic losses in susceptible varieties. The incidence of the disorder can be reduced by post-harvest application of $GA_3^{1,2}$ but the commercial use of GA_3 is limited by its high cost.

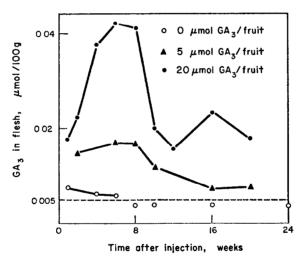


Fig. 1. Levels of GA_3 in cortical tissue of apples that have been injected with GA_3 in the core.

Values determined by fluorometry. Limit of detection was 5 \times 10⁻³ μ mol/100 g tissue.

The results in this paper (Fig. 1) show that the level of GA_3 in the cortical tissue of Jonathan apples during cool storage was increased by injection of GA_3 into the core but that the maximum level accumulated never exceeded 0.5% of the added dose. While the inci-

¹ WILLS, R. B. H. and PATTERSON, B. D. (1971) Phytochemistry 10, 2983.

² WILLS, R. B. H. and Scott, K. J. (1972) J. Hort. Sci. 47, 389.

2608 R. B. H. WILLS

dence of breakdown (22% in untreated fruit) was reduced significantly (p=0.05) by the addition of GA₃, there was no difference in breakdown between fruit with 5μ mol (13%) and 20 μ mol (14%) added. This suggests that maximum inhibition of breakdown is achieved by relatively small increases in the level of GA₃ (<0.015 μ mol/100 g tissue).

Thus, the amount of GA_3 that would need to be applied to fruit for maximum inhibition of breakdown could be greatly reduced if more efficient methods of transporting GA_3 could be found. Commercial use of GA_3 would then become economically possible.

EXPERIMENTAL

Treatment of fruit. Mature Jonathan apples were distributed into 60 units each with 5 fruit/unit. The fruit from 20 of the units were each injected in the core area with a solution containing 5 or 20 μ mol GA₃ in 0·2 ml EtOH. All fruit were then stored at -1° . At various intervals, a 50-g sample of cortical tissue was obtained from each of 2 units/treatment. The samples were frozen in liquid nitrogen and assayed for GA₃. The effect of GA₃ on breakdown was determined by distributing Jonathan apples from the same orchard into 36 units each with 25 fruit/unit. The units were injected with GA₃ as above and stored at -1° for 22 weeks. All fruit were then transferred to 20° and after 7 days were examined for presence of breakdown.

Extraction of GA_3 . The frozen sample was blended with CH_2Cl_2 (100 ml) for 5 min. The CH_2Cl_2 layer was removed, dried (Na₂SO₄) and filtered. The apple residue was washed with CH_2Cl_2 (100 ml) which was removed, dried (using the same Na₂SO₄) and filtered. The Na₂SO₄ residue was washed with CH_2Cl_2 (50 ml) and filtered. The combined filtrate was evaporated to dryness and the residue was re-dissolved in CH_2Cl_2 (5 ml).

Estimation of GA_3 . GA_3 was isolated by TLC using a modification of the method reported by Jones et al.³ This involved a 2-D separation on silica gel G with (a) EtOAc, then (b) an iso-PrOH-H₂O (5.1). The GA_3 was detected on the plate by its fluorescence under UV-light after treatment with H₂SO₄. The GA_3 spot was eluted with EtOH which was then evaporated off. H₂SO₄ (85%) (5 ml) was added and the solution was allowed to stand for 2 hr. The fluorescence of the solution was measured in a Coleman Photofluorometer (Model 12C with filters No. 12-221 (source) and No. 14-211 (counter). The amount of GA_3 was determined from a standard curve prepared with pure GA_3 .

³ Jones, D. F., Macmillan, J. and Radley, M. (1963) Phytochemistry 2, 307.